只需将 EK 算法或 Dinic 算法中找增广路的过程,替换为用最短路算法寻找单位费用最小的增广路即可。
基于 EK 算法的实现
struct qxx { int nex, t, v, c;};qxx e[M];int h[N], cnt = 1;void add_path(int f, int t, int v, int c) { e[++cnt] = qxx{h[f], t, v, c}, h[f] = cnt;}void add_flow(int f, int t, int v, int c) { add_path(f, t, v, c); add_path(t, f, 0, -c);}int dis[N], pre[N], incf[N];bool vis[N];bool spfa() { memset(dis, 0x3f, sizeof(dis)); queue<int> q; q.push(s), dis[s] = 0, incf[s] = INF, incf[t] = 0; while (q.size()) { int u = q.front(); q.pop(); vis[u] = false; for (int i = h[u]; i; i = e[i].nex) { const int &v = e[i].t, &w = e[i].v, &c = e[i].c; if (!w || dis[v] <= dis[u] + c) continue; dis[v] = dis[u] + c, incf[v] = min(w, incf[u]), pre[v] = i; if (!vis[v]) q.push(v), vis[v] = true; } } return incf[t];}int maxflow, mincost;void update() { maxflow += incf[t]; for (int u = t; u != s; u = e[pre[u] ^ 1].t) { e[pre[u]].v -= incf[t], e[pre[u] ^ 1].v += incf[t]; mincost += incf[t] * e[pre[u]].c; }}// 调用:while(spfa())update();
基于 Dinic 算法的实现
#include <algorithm>#include <cstdio>#include <cstring>#include <queue>constexpr int N = 5e3 + 5, M = 1e5 + 5;constexpr int INF = 0x3f3f3f3f;int n, m, tot = 1, lnk[N], cur[N], ter[M], nxt[M], cap[M], cost[M], dis[N], ret;bool vis[N];void add(int u, int v, int w, int c) { ter[++tot] = v, nxt[tot] = lnk[u], lnk[u] = tot, cap[tot] = w, cost[tot] = c;}void addedge(int u, int v, int w, int c) { add(u, v, w, c), add(v, u, 0, -c); }bool spfa(int s, int t) { memset(dis, 0x3f, sizeof(dis)); memcpy(cur, lnk, sizeof(lnk)); std::queue<int> q; q.push(s), dis[s] = 0, vis[s] = true; while (!q.empty()) { int u = q.front(); q.pop(), vis[u] = false; for (int i = lnk[u]; i; i = nxt[i]) { int v = ter[i]; if (cap[i] && dis[v] > dis[u] + cost[i]) { dis[v] = dis[u] + cost[i]; if (!vis[v]) q.push(v), vis[v] = true; } } } return dis[t] != INF;}int dfs(int u, int t, int flow) { if (u == t) return flow; vis[u] = true; int ans = 0; for (int &i = cur[u]; i && ans < flow; i = nxt[i]) { int v = ter[i]; if (!vis[v] && cap[i] && dis[v] == dis[u] + cost[i]) { int x = dfs(v, t, std::min(cap[i], flow - ans)); if (x) ret += x * cost[i], cap[i] -= x, cap[i ^ 1] += x, ans += x; } } vis[u] = false; return ans;}int mcmf(int s, int t) { int ans = 0; while (spfa(s, t)) { int x; while ((x = dfs(s, t, INF))) ans += x; } return ans;}int main() { int s, t; scanf("%d%d%d%d", &n, &m, &s, &t); while (m--) { int u, v, w, c; scanf("%d%d%d%d", &u, &v, &w, &c); addedge(u, v, w, c); } int ans = mcmf(s, t); printf("%d %d\n", ans, ret); return 0;}