动态点分治
动态点分治用来解决 带点权/边权修改 的树上路径信息统计问题。
点分树
回顾点分治的计算过程。
对于一个结点 来说,其子树中的简单路径包括两种:经过结点 的,由一条或两条从 出发的路径组成的;和不经过结点 的,即已经包含在其所有儿子结点子树中的路径。
对于一个子树中简单路径的计算,我们选择一个分治中心 ,计算经过该节点的子树中路径的信息,然后对于其每个儿子结点,将删去 后该点所在连通块作为一个子树,递归计算。选择的分治中心点可以构成一个树形结构,称为 点分树。我们发现,计算点分树中同一层的结点所代表的连通块(即以该结点为分治中心的连通块)的大小总和是 的。这意味着,点分治的时间复杂度是与点分树的深度相关的,若点分树的深度为 ,则点分治的复杂度为 。
可以证明,当我们每次选择连通块的重心作为分治中心的时候,点分树的深度最小,为 的。这样,我们就可以在 的时间复杂度内统计树上 条路径的信息了。
由于树的形态在动态点分治的过程中不会改变,所以点分树的形态在动态点分治的过程中也不会改变。
下面给出求点分树的参考代码:
void calcsiz(int x, int f) {
siz[x] = 1;
maxx[x] = 0;
for (int j = h[x]; j; j = nxt[j])
if (p[j] != f && !vis[p[j]]) {
calcsiz(p[j], x);
siz[x] += siz[p[j]];
maxx[x] = max(maxx[x], siz[p[j]]);
}
maxx[x] =
max(maxx[x], sum - siz[x]); // maxx[x] 表示以 x 为根时的最大子树大小
if (maxx[x] < maxx[rt])
rt = x; // 这里不能写 <= ,保证在第二次 calcsiz 时 rt 不改变
}
void pre(int x) {
vis[x] = true; // 表示在之后的过程中不考虑 x 这个点
for (int j = h[x]; j; j = nxt[j])
if (!vis[p[j]]) {
sum = siz[p[j]];
rt = 0;
maxx[rt] = inf;
calcsiz(p[j], -1);
calcsiz(rt, -1); // 计算两次,第二次求出以 rt 为根时的各子树大小
fa[rt] = x;
pre(rt); // 记录点分树上的父亲
}
}
int main() {
sum = n;
rt = 0;
maxx[rt] = inf;
calcsiz(1, -1);
calcsiz(rt, -1);
pre(rt);
}实现修改
在查询和修改的时候,我们在点分树上暴力跳父亲修改。由于点分树的深度最多是 的,所以这样做复杂度能得到保证。
在动态点分治的过程中,需要一个结点到其点分树上的祖先的距离等其他信息,由于一个点最多有 个祖先,我们可以在计算点分树时额外计算深度 或使用 LCA,预处理出这些距离或实现实时查询。注意:一个结点到其点分树上的祖先的距离不一定递增,不能累加!
在动态点分治的过程中,一个结点在其点分树上的祖先结点的信息中可能会被重复计算,这是我们需要消去重复部分的影响。一般的方法是对于一个连通块用两种方式记录:一个是其到分治中心的距离信息,另一个是其到点分树上分治中心父亲的距离信息。这一部分内容将在例题中得到展现。
给定一棵有 个结点的树,初始时所有结点都是黑色的。你需要实现以下两种操作:
反转一个结点的颜色(白变黑,黑变白);
询问树上两个最远的黑点的距离。
求出点分树,对于每个结点 维护两个 可删堆。 存储结点 代表的连通块中的所有黑点到 的距离信息, 表示结点 在点分树上的所有儿子和它自己中的黑点到 的距离信息,由于本题贪心的求答案方法,且两个来自于同一子树的路径不能成为一条完成的路径,我们只在这个堆中插入其自己的值和其每个子树中的最大值。我们发现, 中最大的两个值(如果没有两个就是所有值)的和就是分治时分支中心为 时经过结点 的最长黑端点路径。我们可以用可删堆 存储所有结点的答案,这个堆中的最大值就是我们所求的答案。
我们可以根据上面的定义维护 这些可删堆。当 中的值发生变化时,我们也可以在 的时间复杂度内维护 。
现在我们来看一下,当我们反转一个点的颜色时, 值会发生怎样的改变。当结点原来是黑色时,我们要进行的是删除操作;当结点原来是白色时,我们要进行的是插入操作。
假如我们要反转结点 的颜色。对于其所有祖先 ,我们在 中插入或删除 ,并同时维护 的值。特别的,我们要在 中插入或删除值 。
参考代码:
#include <algorithm>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
constexpr int MAXN = 100010;
constexpr int inf = 2e9;
int n, a, b, m, x, col[MAXN];
// 0 off 1 on
char op;
int cur, h[MAXN * 2], nxt[MAXN * 2], p[MAXN * 2];
void add_edge(int x, int y) {
cur++;
nxt[cur] = h[x];
h[x] = cur;
p[cur] = y;
}
bool vis[MAXN];
int rt, sum, siz[MAXN], maxx[MAXN], fa[MAXN], dep[MAXN];
void calcsiz(int x, int f) {
siz[x] = 1;
maxx[x] = 0;
for (int j = h[x]; j; j = nxt[j])
if (p[j] != f && !vis[p[j]]) {
calcsiz(p[j], x);
siz[x] += siz[p[j]];
maxx[x] = max(maxx[x], siz[p[j]]);
}
maxx[x] =
max(maxx[x], sum - siz[x]); // maxx[x] 表示以 x 为根时的最大子树大小
if (maxx[x] < maxx[rt])
rt = x; // 这里不能写 <= ,保证在第二次 calcsiz 时 rt 不改变
}
struct heap {
priority_queue<int> A, B; // heap=A-B
void insert(int x) { A.push(x); }
void erase(int x) { B.push(x); }
int top() {
while (!B.empty() && A.top() == B.top()) A.pop(), B.pop();
return A.top();
}
void pop() {
while (!B.empty() && A.top() == B.top()) A.pop(), B.pop();
A.pop();
}
int top2() {
int t = top(), ret;
pop();
ret = top();
A.push(t);
return ret;
}
int size() { return A.size() - B.size(); }
} dist[MAXN], ch[MAXN], ans;
void dfs(int x, int f, int d, heap& y) {
y.insert(d);
for (int j = h[x]; j; j = nxt[j])
if (p[j] != f && !vis[p[j]]) dfs(p[j], x, d + 1, y);
}
void pre(int x) {
vis[x] = true; // 不考虑 x
for (int j = h[x]; j; j = nxt[j])
if (!vis[p[j]]) {
rt = 0;
maxx[rt] = inf;
sum = siz[p[j]];
calcsiz(p[j], -1);
calcsiz(rt, -1); // 计算两次,第二次求出以 rt 为根时的各子树大小
fa[rt] = x;
dfs(p[j], -1, 1, dist[rt]);
ch[x].insert(dist[rt].top());
dep[rt] = dep[x] + 1;
pre(rt); // 记录点分树上的父亲
}
ch[x].insert(0);
if (ch[x].size() >= 2)
ans.insert(ch[x].top() + ch[x].top2());
else if (ch[x].size())
ans.insert(ch[x].top());
}
struct LCA {
int dep[MAXN], lg[MAXN], fa[MAXN][20];
void dfs(int x, int f) {
for (int j = h[x]; j; j = nxt[j])
if (p[j] != f) dep[p[j]] = dep[x] + 1, fa[p[j]][0] = x, dfs(p[j], x);
}
void init() {
dfs(1, -1);
for (int i = 2; i <= n; i++) lg[i] = lg[i / 2] + 1;
for (int j = 1; j <= lg[n]; j++)
for (int i = 1; i <= n; i++) fa[i][j] = fa[fa[i][j - 1]][j - 1];
}
int query(int x, int y) {
if (dep[x] > dep[y]) swap(x, y);
int k = dep[y] - dep[x];
for (int i = 0; k; k = k / 2, i++)
if (k & 1) y = fa[y][i];
if (x == y) return x;
k = dep[x];
for (int i = lg[k]; i >= 0; i--)
if (fa[x][i] != fa[y][i]) x = fa[x][i], y = fa[y][i];
return fa[x][0];
}
int dist(int x, int y) { return dep[x] + dep[y] - 2 * dep[query(x, y)]; }
} lca;
int d[MAXN][20];
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
cin >> n;
for (int i = 1; i < n; i++) cin >> a >> b, add_edge(a, b), add_edge(b, a);
lca.init();
rt = 0;
maxx[rt] = inf;
sum = n;
calcsiz(1, -1);
calcsiz(rt, -1);
pre(rt);
for (int i = 1; i <= n; i++)
for (int j = i; j; j = fa[j]) d[i][dep[i] - dep[j]] = lca.dist(i, j);
cin >> m;
while (m--) {
cin >> op;
if (op == 'G') {
if (ans.size())
cout << ans.top() << '\n';
else
cout << "-1\n";
} else {
cin >> x;
if (!col[x]) {
if (ch[x].size() >= 2) ans.erase(ch[x].top() + ch[x].top2());
ch[x].erase(0);
if (ch[x].size() >= 2) ans.insert(ch[x].top() + ch[x].top2());
for (int i = x; fa[i]; i = fa[i]) {
if (ch[fa[i]].size() >= 2)
ans.erase(ch[fa[i]].top() + ch[fa[i]].top2());
ch[fa[i]].erase(dist[i].top());
dist[i].erase(d[x][dep[x] - dep[fa[i]]]);
if (dist[i].size()) ch[fa[i]].insert(dist[i].top());
if (ch[fa[i]].size() >= 2)
ans.insert(ch[fa[i]].top() + ch[fa[i]].top2());
}
} else {
if (ch[x].size() >= 2) ans.erase(ch[x].top() + ch[x].top2());
ch[x].insert(0);
if (ch[x].size() >= 2) ans.insert(ch[x].top() + ch[x].top2());
for (int i = x; fa[i]; i = fa[i]) {
if (ch[fa[i]].size() >= 2)
ans.erase(ch[fa[i]].top() + ch[fa[i]].top2());
if (dist[i].size()) ch[fa[i]].erase(dist[i].top());
dist[i].insert(d[x][dep[x] - dep[fa[i]]]);
ch[fa[i]].insert(dist[i].top());
if (ch[fa[i]].size() >= 2)
ans.insert(ch[fa[i]].top() + ch[fa[i]].top2());
}
}
col[x] ^= 1;
}
}
return 0;
}给定一棵有 个结点的树,树上每个结点都有一个权值 。实现以下两种操作:
- 询问与结点 距离不超过 的结点权值和;
- 修改结点 的点权为 ,即 。
我们用动态开点权值线段树记录距离信息。
类似于上题的思路,对于每个结点,我们维护线段树 ,表示分治块 中的所有结点到结点 的距离信息,下标为距离,权值加上点权。线段树 表示分治块 中所有结点到结点 在分治树上的父亲结点的距离信息。
在本题中,所有查询和修改都需要在点分树上对所有祖先进行修改。
以查询操作为例,如果我们要查询距离结点 不超过 的结点的权值和,我们要先将答案加上线段树 中下标从 到 的权值和,然后我们遍历 的所有祖先 ,设其低一级祖先为 ,令 ,如果我们不进入包含 的子树,即以 为根的子树,那么我们要将答案加上线段树 中下标从 到 的权值和。由于我们重复计算了以 为根的部分,我们要将答案减去线段树 中下标从 到 的权值和。
在进行修改操作时,我们要同时维护 和 。
参考代码:
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
constexpr int MAXN = 100010;
constexpr int inf = 2e9;
constexpr int ddd = 6000010;
struct Segtree {
int cnt, rt[MAXN], sum[ddd], lc[ddd], rc[ddd];
void update(int& o, int l, int r, int x, int v) {
if (!o) o = ++cnt;
if (l == r) {
sum[o] += v;
return;
}
int mid = (l + r) >> 1;
if (x <= mid)
update(lc[o], l, mid, x, v);
else
update(rc[o], mid + 1, r, x, v);
sum[o] = sum[lc[o]] + sum[rc[o]];
}
int query(int o, int l, int r, int ql, int qr) {
if (!o || r < ql || l > qr) return 0;
if (ql <= l && r <= qr) return sum[o];
int mid = (l + r) >> 1;
return query(lc[o], l, mid, ql, qr) + query(rc[o], mid + 1, r, ql, qr);
}
} dist, ch;
int n, m, val[MAXN], u, v, op, x, y, lstans;
int cur, h[MAXN * 2], nxt[MAXN * 2], p[MAXN * 2];
void add_edge(int x, int y) {
cur++;
nxt[cur] = h[x];
h[x] = cur;
p[cur] = y;
}
struct LCA {
int dep[MAXN], lg[MAXN], fa[MAXN][20];
void dfs(int x, int f) {
for (int j = h[x]; j; j = nxt[j])
if (p[j] != f) dep[p[j]] = dep[x] + 1, fa[p[j]][0] = x, dfs(p[j], x);
}
void init() {
dep[1] = 1;
dfs(1, -1);
for (int i = 2; i <= n; i++) lg[i] = lg[i / 2] + 1;
for (int j = 1; j <= lg[n]; j++)
for (int i = 1; i <= n; i++) fa[i][j] = fa[fa[i][j - 1]][j - 1];
}
int query(int x, int y) {
if (dep[x] > dep[y]) swap(x, y);
int k = dep[y] - dep[x];
for (int i = 0; k; k = k / 2, i++)
if (k & 1) y = fa[y][i];
if (x == y) return x;
k = dep[x];
for (int i = lg[k]; i >= 0; i--)
if (fa[x][i] != fa[y][i]) x = fa[x][i], y = fa[y][i];
return fa[x][0];
}
int dist(int x, int y) { return dep[x] + dep[y] - 2 * dep[query(x, y)]; }
} lca;
int rt, sum, siz[MAXN], maxx[MAXN], fa[MAXN];
int d[MAXN][20], dep[MAXN];
bool vis[MAXN];
void calcsiz(int x, int fa) {
siz[x] = 1;
maxx[x] = 0;
for (int j = h[x]; j; j = nxt[j])
if (p[j] != fa && !vis[p[j]]) {
calcsiz(p[j], x);
siz[x] += siz[p[j]];
maxx[x] = max(maxx[x], siz[p[j]]);
}
maxx[x] =
max(maxx[x], sum - siz[x]); // maxx[x] 表示以 x 为根时的最大子树大小
if (maxx[x] < maxx[rt])
rt = x; // 这里不能写 <= ,保证在第二次 calcsiz 时 rt 不改变
}
void dfs1(int x, int fa, int y, int d) {
ch.update(ch.rt[y], 0, n, d, val[x]);
for (int j = h[x]; j; j = nxt[j])
if (p[j] != fa && !vis[p[j]]) dfs1(p[j], x, y, d + 1);
}
void dfs2(int x, int fa, int y, int d) {
dist.update(dist.rt[y], 0, n, d, val[x]);
for (int j = h[x]; j; j = nxt[j])
if (p[j] != fa && !vis[p[j]]) dfs2(p[j], x, y, d + 1);
}
void pre(int x) {
vis[x] = true; // 表示在之后的过程中不考虑 x 这个点
dfs2(x, -1, x, 0);
for (int j = h[x]; j; j = nxt[j])
if (!vis[p[j]]) {
rt = 0;
maxx[rt] = inf;
sum = siz[p[j]];
calcsiz(p[j], -1);
calcsiz(rt, -1); // 计算两次,第二次求出以 rt 为根时的各子树大小
dfs1(p[j], -1, rt, 1);
fa[rt] = x;
dep[rt] = dep[x] + 1;
pre(rt); // 记录点分树上的父亲
}
}
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
cin >> n >> m;
for (int i = 1; i <= n; i++) cin >> val[i];
for (int i = 1; i < n; i++) cin >> u >> v, add_edge(u, v), add_edge(v, u);
lca.init();
rt = 0;
maxx[rt] = inf;
sum = n;
calcsiz(1, -1);
calcsiz(rt, -1);
pre(rt);
for (int i = 1; i <= n; i++)
for (int j = i; j; j = fa[j]) d[i][dep[i] - dep[j]] = lca.dist(i, j);
while (m--) {
cin >> op >> x >> y;
x ^= lstans;
y ^= lstans;
if (op == 0) {
lstans = dist.query(dist.rt[x], 0, n, 0, y);
int nww = 0;
for (int i = x; fa[i]; i = fa[i]) {
nww = d[x][dep[x] - dep[fa[i]]]; // lca.dist(x,fa[i]);
lstans += dist.query(dist.rt[fa[i]], 0, n, 0, y - nww);
lstans -= ch.query(ch.rt[i], 0, n, 0, y - nww);
}
cout << lstans << '\n';
}
if (op == 1) {
int nww = 0;
dist.update(dist.rt[x], 0, n, 0, y - val[x]);
for (int i = x; fa[i]; i = fa[i]) {
nww = d[x][dep[x] - dep[fa[i]]]; // lca.dist(x,fa[i]);
dist.update(dist.rt[fa[i]], 0, n, nww, y - val[x]);
ch.update(ch.rt[i], 0, n, nww, y - val[x]);
}
val[x] = y;
}
}
return 0;
}